De-Identifying Facial Images Using Singular Value Decomposition and Projections on Hyperspheres

Panteleimon Chriskos
Olga Zoidi
Anastasios Tefas
Ioannis Pitas

AIIA Lab
Aristotle University of Thessaloniki
Greece
Introduction

• Two novel methods are analyzed that successfully hinder automatic face recognition.

• The methods:
 – maintain enough visual data so that viewers can identify the person or persons in a scene.
 – maintain the image quality so that the end product can be considered acceptable for everyday use.
 – de-identify faces using
 a) the Singular Value Decomposition Method (SVD)
 b) and utilizing projections on hyperspheres.
Singular Value Decomposition

- Singular value decomposition (SVD) is a matrix factorization method.

- It approximates a matrix $A \in \mathbb{R}^{n \times p}$ with the product of three matrices:

 $U \in \mathbb{R}^{n \times n}$ \quad $S \in \mathbb{R}^{n \times p}$ \quad $V \in \mathbb{R}^{p \times p}$

- These matrices must abide to the following conditions
 - matrix S must be diagonal and
 - matrices U and V must be orthogonal
Singular Value Decomposition

• Generally the SVD theorem states that any matrix

\[A \in \mathbb{R}^{n \times p} \]

can be written as

\[A = U \times S \times V^T \]

• SVD is the workhorse of this person de-identification method. This method will be referenced as SVD-DID.
The proposed person de-identification method utilizes SVD.

The goal is to manipulate facial images in order to reduce facial identification by software agents.

This method alters the values in matrices S, U and V produced by the factorization of the input matrix A (in our case a facial image).
Person De-identification based on SVD

In order to reduce the correct identification rate, the method follows the steps mentioned below:

- **Step 1: SVD Coefficient Zeroing (SVD-CZ)**
 The coefficients (singular values) of matrix S with the largest values are reduced to zero.

- **Step 2: SVD Coefficient Averaging (SVD-CA)**
 The values of matrices U and V are blurred using an averaging filter.

- **Step 3: SVD Modified Sobel Filtering (SVD-MSF)**
 Matrices U and V are sharpened using a modified Sobel filter.
Step 1: SVD Coefficient Zeroing (SVD-CZ)

- Matrix S is transformed into matrix S_{CZ} by setting the first N singular values to zero (0).

- The idea is to remove the most discriminative visual information in the image which lies in the coefficients (singular values) with the largest values.

- By removing the first coefficients, we actually are removing the majority of information that a software agent would use to successfully identify a subject.
Step 1: SVD Coefficient Zeroing (SVD-CZ)

- Applying this first step, the new image can be calculated through the following formula:

\[A = U \times S_{\text{CZ}} \times V^T \]

- Resulting image (first frame of first individual from the first recording)

- Output image for \(N=1 \).

- Results:
 - Darkening
 - Visual Artifacts
Step 2: SVD Coefficient Averaging (SVD-CA)

- Matrices \mathbf{U} and \mathbf{V} are transformed into $\mathbf{U}_{\text{averaged}}$ and $\mathbf{V}_{\text{averaged}}$ by applying a circular averaging filter of radius r which is a $2r + 1 \times 2r + 1$ filter containing zeroes and the value $1/n^2$ where n is the number of cells that are contained in the circle of the filter.

- The idea is to blend the eigenvectors in the initial matrices in order to hinder classifiers trained with clean versions of facial images from identifying a certain individual.
Step 2: SVD Coefficient Averaging (SVD-CA)

• Matrices U_{CA} and V_{CA} are computed as follows

$$
U_{CA} = \frac{\alpha \cdot U_{\text{averaged}} + U}{1 + \alpha} \\
V_{CA} = \frac{\alpha \cdot V_{\text{averaged}} + V}{1 + \alpha}
$$

where α is a parameter preferably in the range $[0.5, 1.0]$

• Output image for
 - V_{averaged}, U_{averaged}
 - $r = 10$, $\alpha = 0.5$

• Results:
 - Smoothing
 - Brightening of certain areas
Step 3: SVD Modified Sobel Filtering (SVD-MSF)

- Matrices U_{CA} and V_{CA} are transformed into V_{MSF} and U_{MSF} by applying a modified Sobel filter G

$$G = \begin{bmatrix}
 d & 2d & d \\
 0 & 0 & 0 \\
 -d & -2d & -d
\end{bmatrix}, d = [0.2, 0.8]$$

- The idea is to blend the eigenvectors even further while removing part of the blurring introduced by the averaging filter in the previous step.
Step 3: SVD Modified Sobel Filtering (SVD-MSF)

• Matrices U_{final} and V_{final} are computed as follows

$$U_{\text{final}} = \frac{\alpha \ast U_{\text{MSF}} + U}{1 + \alpha} \quad V_{\text{final}} = \frac{\alpha \ast V_{\text{MSF}} + V}{1 + \alpha}$$

where α is a parameter preferably in the range $[0.5, 1.0]$.

• Output image for
 - $d = 0.2, \alpha = 0.5$
 - $d = 1.0, \alpha = 0.5$

• Results:
 - Prominent edges
 - Visual artifacts
Putting it all together SVD-DID

- The output image P is computed as

$$P = U_{\text{final}} \times S_{\text{CZ}} \times V_{\text{final}}^T$$

- To counterbalance the darkening effect imposed by this method, luminosity is added to the output image.

- Output image for

$N = 1, r = 10, d = 0.5$

- $\alpha = 0.5$
- $\alpha = 0.8$
De-identification based on Projections

• The proposed face de-identification method utilizes projections on hyperspheres.

• The goal is to manipulate facial images in order to reduce facial identification by software agents.

• Two methods were developed:
 - Projection De-Identification on Origin (PDID-O)
 - Projection De-Identification on Mean Image (PDID-M)
Projections on Hyperspheres

• A hypersphere S^{n-1} centered at the origin is defined as:

$$S^{n-1} = \left\{ x \in \mathbb{R}^n : \|x\| = R \right\}$$

where x is a point in the n-dimensional space, $\|x\|$ is the Euclidean norm, and R is the radius of the hypersphere.

• The projection of a point $x \in \mathbb{R}^n$ onto S^{n-1} is given by:

$$P_{S^{n-1}} (x) = \frac{R}{\|x\|} x$$

with the hypersphere centered at the origin.
The de-identified image I_{DID} is defined as:

$$I_{DID} = \frac{1}{2} \left(\frac{R}{\|I\|} I + \bar{I} \right)$$

where I is the original facial image, R is the hypersphere radius and \bar{I} is the average facial image of the dataset calculated as:

$$\bar{I} = \frac{1}{N_{im}} \sum_{i=1}^{N_{im}} I_i$$

where N_{im} is the total number of facial images.
The de-identified image I_{DID} is defined as:

$$I_{DID} = \left(\frac{R(I - \overline{I})}{\|I - \overline{I}\|} + \overline{I} \right)$$

where $\frac{R(I - \overline{I})}{\|I - \overline{I}\|}$ is the projection of the original facial image onto the hypersphere of radius R centered at \overline{I}.
Selection of Radius R

• By choosing a small value for radius R the facial images are projected near the hypersphere center and further from their original positions.

• By choosing a large value for R the images are projected close to their original positions.

• Therefore, it is expected that for large values of R the identification error rates will be lower compared to the error rates for smaller values of R.

• But which values of R are considered large/small?
Automatic Selection of Radius \(R \)

- Automatic selection of radius \(R \) is achieved through the Support Vector Data Description (SVDD) method.

- SVDD is a method for defining the minimum bounding sphere that encompasses most of or all of the training vectors and as such it gives an estimate of the radius \(R \) that should be used.
• SVDD solves the following optimization problem:

\[
\min_{R, \xi, u} \quad R^2 + c \sum_{i}^{N} \xi_i
\]

s.t. \quad \|x_i - u\|_2^2 \leq R^2 + \xi_i

\xi_i \geq 0, \quad i = 1, 2, \ldots, N

where \(R \) is the radius, \(u \) is the center of the sphere, \(x_i \) are the facial image representations, \(\xi_i \) are slack variables, and \(c \) is a parameter that describes the importance of the error.
The optimization problem can be solved by finding the saddle point of the following Lagrangian:

\[
\mathcal{L}(R, \xi_i, u, \alpha, \beta) = R^2 + c \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \beta_i \xi_i - \sum_{i=1}^{N} a_i \left(R^2 + \xi_i - \|x_i - u\|^2 \right).
\]

and its optimality conditions:

\[
\frac{\partial \mathcal{L}}{\partial u} = 0 \Rightarrow \sum_{i=1}^{N} a_i u = \sum_{i=1}^{N} a_i x_i, \quad \frac{\partial \mathcal{L}}{\partial R} = 0 \Rightarrow \sum_{i=1}^{N} a_i = 1
\]

\[
\frac{\partial \mathcal{L}}{\partial \xi_i} = 0 \Rightarrow a_i = c - \beta_i
\]
• By using the Karush-Kuhn-Tucker theorem, the problem is formulated in its dual form as:

\[
\max_{\alpha} \sum_{j=1}^{N} a_i x_i^T x_i - \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j x_i^T x_j,
\]

under the condition \(0 \leq \alpha_i \leq c\) and \(\sum a_i = 1\).

• Finally, the radius \(R\) is calculated as:

\[
R^2 = \left\{ \min ||x_i - u||^2_2, x_i \text{ is a support vector or } a_i > 0 \right\}
\]
Experimental Setup

- The effectiveness of the Projection-DID method was tested on two facial image datasets:
 - XM2VTS database having 388 train samples, 256 test samples and 128721 dimensions, and
 - Extended Yale B database having 1209 train samples, 1205 test samples and 1200 dimensions

- Facial image representation for face recognition was performed through:
 - pixel value vectorization
 - Linear Discriminant analysis (LDA)

- Three classifiers were used in the process:
 - the K-Nearest Neighbour Classifier (KNN)
 - the Nearest Centroid Classifier (NC) and
 - the Naive Bayes Classifier (NBC).
Experimental Procedure

• The de-identified image representation error and quality preservation were measured with the mean Peak SNR through the mean Mean Square Error (mmSE) metric:

\[m\text{MSE} = \frac{1}{N_{im}} \sum_{i=1}^{N_{im}} \left[\frac{1}{np} \sum_{j=1}^{np} (I_i - \hat{I}_j)^2 \right] \]

where \(np \) is the image pixel number, \(I \) is the de-identified facial image and \(\hat{I} \) is the original facial image. The mean PSNR (mPSNR) is calculated through:

\[m\text{PSNR} = 20 \log_{10} (\text{MAX}_I) - 10 \log_{10} (m\text{MSE}) \]

where \(\text{MAX}_I \) is the maximum pixel value of the image.
SVD-DID Results for each step

• Step 1: SVD Coefficient Zeroing (SVD-CZ)
 ▪ Applying only the first step to de-identify a given image the result is of poor quality with visual artifacts by zeroing only a couple of the first singular values.

 ▪ The maximum error rates are 93.21% for the KNN classifier with parameters $N = 8, lum = +100$.

 ▪ The mPSNR ranging from 13.15 ($N = 1$) to 12.45 ($N = 8$).
SVD-DID Results for each step

• Step 2: SVD Coefficient Averaging (SVD-CA)
 - This individual step gives acceptable error rates and mMSE.
 - Increasing radius r generally leads to higher face recognition error rates, while mPSNR does not fluctuate greatly.

<table>
<thead>
<tr>
<th>XM2VTS</th>
<th>Luminosity +100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Filter Radius</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
SVD-DID Results for each step

• Step 3: SVD Modified Sobel Filtering (SVD-MSF)
 ▪ The SVD-MSF step, gives the highest error rates from the other two individual steps.
 ▪ By increasing the value of parameter d we obtain higher mPSNR but, generally the face recognition error rates remain unchanged.

<table>
<thead>
<tr>
<th>XM2VTS</th>
<th>Luminosity +100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of d</td>
<td>KNN</td>
</tr>
<tr>
<td>0.2</td>
<td>50.57 %</td>
</tr>
<tr>
<td>0.5</td>
<td>50.57 %</td>
</tr>
<tr>
<td>1.0</td>
<td>49.81 %</td>
</tr>
</tbody>
</table>
Results for SVD-DID

- The overall result of applying the above steps, leads to high error rates and adequate image quality.

- The parameters can be altered to adjust the equilibrium between image quality and privacy protection depending on the use.

<table>
<thead>
<tr>
<th>XM2VTS</th>
<th>1</th>
<th>90.57 %</th>
<th>90.57 %</th>
<th>93.21 %</th>
<th>12.78</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mPSNR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$lum = +100, a = 0.8, r = 10, d = 0.5$
Experimental Results for PDID-O

TABLE XIV

<table>
<thead>
<tr>
<th>Radius</th>
<th>KNN</th>
<th>NC</th>
<th>NBC</th>
<th>mPSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>93.21%</td>
<td>93.21%</td>
<td>97.36%</td>
<td>12.19</td>
</tr>
<tr>
<td>30</td>
<td>93.21%</td>
<td>93.21%</td>
<td>93.58%</td>
<td>13.17</td>
</tr>
<tr>
<td>50</td>
<td>90.57%</td>
<td>90.57%</td>
<td>93.58%</td>
<td>14.26</td>
</tr>
<tr>
<td>60</td>
<td>90.57%</td>
<td>90.57%</td>
<td>93.58%</td>
<td>14.86</td>
</tr>
<tr>
<td>67.4034</td>
<td>90.57%</td>
<td>90.57%</td>
<td>93.58%</td>
<td>15.32</td>
</tr>
<tr>
<td>70</td>
<td>90.57%</td>
<td>90.57%</td>
<td>93.58%</td>
<td>15.48</td>
</tr>
<tr>
<td>80</td>
<td>90.57%</td>
<td>90.57%</td>
<td>93.58%</td>
<td>16.15</td>
</tr>
<tr>
<td>100</td>
<td>49.06%</td>
<td>48.30%</td>
<td>61.89%</td>
<td>17.58</td>
</tr>
<tr>
<td>120</td>
<td>26.04%</td>
<td>26.04%</td>
<td>54.72%</td>
<td>19.15</td>
</tr>
</tbody>
</table>

TABLE XV

<table>
<thead>
<tr>
<th>Radius</th>
<th>KNN</th>
<th>NC</th>
<th>NBC</th>
<th>mPSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>94.94%</td>
<td>94.19%</td>
<td>92.94%</td>
<td>13.22</td>
</tr>
<tr>
<td>10</td>
<td>89.96%</td>
<td>79.92%</td>
<td>72.61%</td>
<td>15.41</td>
</tr>
<tr>
<td>15</td>
<td>60.83%</td>
<td>88.13%</td>
<td>82.57%</td>
<td>16.91</td>
</tr>
<tr>
<td>17.4241</td>
<td>48.30%</td>
<td>90.37%</td>
<td>86.14%</td>
<td>16.98</td>
</tr>
<tr>
<td>20</td>
<td>38.67%</td>
<td>91.95%</td>
<td>89.38%</td>
<td>16.50</td>
</tr>
</tbody>
</table>
Experimental Results for PDID-O

- $R = 10$
- $R = 30$
- $R = 50$
- $R = 70$
- $R = 100$
- $R = 120$
Experimental Results for PDID-M

TABLE XVI
Error rates for PDID-M (XM2VTS)

<table>
<thead>
<tr>
<th>Radius</th>
<th>KNN</th>
<th>NC</th>
<th>NBC</th>
<th>mPSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>96.23%</td>
<td>96.23%</td>
<td>96.23%</td>
<td>17.09</td>
</tr>
<tr>
<td>6</td>
<td>90.19%</td>
<td>94.72%</td>
<td>96.23%</td>
<td>17.44</td>
</tr>
<tr>
<td>8</td>
<td>90.19%</td>
<td>90.19%</td>
<td>90.19%</td>
<td>17.80</td>
</tr>
<tr>
<td>10</td>
<td>90.19%</td>
<td>90.19%</td>
<td>90.19%</td>
<td>18.18</td>
</tr>
<tr>
<td>12</td>
<td>66.04%</td>
<td>71.70%</td>
<td>90.19%</td>
<td>18.57</td>
</tr>
<tr>
<td>14</td>
<td>53.21%</td>
<td>53.58%</td>
<td>73.58%</td>
<td>18.98</td>
</tr>
</tbody>
</table>

TABLE XVII
Error rates for PDID-M (Yale B)

<table>
<thead>
<tr>
<th>Radius</th>
<th>KNN</th>
<th>NC</th>
<th>NBC</th>
<th>mPSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96.76%</td>
<td>92.61%</td>
<td>88.13%</td>
<td>13.58</td>
</tr>
<tr>
<td>2</td>
<td>95.02%</td>
<td>89.21%</td>
<td>83.32%</td>
<td>14.81</td>
</tr>
<tr>
<td>3</td>
<td>88.71%</td>
<td>89.71%</td>
<td>83.15%</td>
<td>16.21</td>
</tr>
<tr>
<td>4</td>
<td>76.51%</td>
<td>89.96%</td>
<td>81.74%</td>
<td>17.82</td>
</tr>
<tr>
<td>5</td>
<td>66.14%</td>
<td>90.54%</td>
<td>81.41%</td>
<td>19.69</td>
</tr>
</tbody>
</table>
Experimental Results for PDID-M

$R = 4$
$R = 6$
$R = 8$
$R = 10$
$R = 12$
$R = 14$
Method Comparison

• From the above discussion it can be concluded that both methods offer high face recognition error rates.

• In general, the SVD-DID methods display slightly higher face recognition error rates compared to the Projection-DID methods by one or two percent.

• Depending on whether privacy is a must or if quality is more important, correct selection of the parameters in each method can offer the desired outcome.
Method Comparison

SVD-DID error rate > 90%

SVD-SDID error rate > 90%

PDID-O error rate > 90%

PDID-M error rate > 90%
Conclusions SVD-DID

• The SVD-DID method, aims to limit the effectiveness of face identification methods, while retaining part of the initial visual quality.

• From the above results and discussion, it can be deducted that using the appropriate parameter values in each step, a high level of privacy can be attained.

• In the YaleB database, the highest error rate achieved was 97.51% and the highest face recognition error rate for the XM2VTS database was 97.36%.

• Despite the high face recognition error rate, the end product of these methods can be characterized as acceptable for everyday use.
Conclusions Projection-DID

- The developed Projection-DID methods aim to limit the effectiveness of face identification methods while retaining adequate visual quality.
- By applying these methods a high level of privacy can be attained.
- The highest identification error rates achieved were:
 - [PDID-O] 97.36% (XM2VTS) and 94.94% (Yale B) and
 - [PDID-M] 96.23% (XM2VTS) and 96.76% (Yale B).
- Despite the high error rates, the end product of these methods can be characterized as acceptable for everyday use, rendering the Projection-DID method successful in protecting privacy and providing a visually acceptable output.
Thank You.